Impact of Dataset Composition on the Performance of Machine

Learning Models in Virtual Screening —_
!
Anastasiia Krokhina (Bar-llan University, University of Strasbourg) Random traintest spli
Advisor: Hanoch Senderowitz (Bar-llan University) | l
=ty i
' Bar-llan Universiteé S |

I i Munous CHEmoINFo+ Undersamni
Unive I'Slty de Strasbourg | -~ o B | E"Tm""”g
! !

Train set Train set
I Introduction 10 000 Balanced
Common practices suggest that predictive Machine Learning (ML) models should be
developed using well-balanced datasets. This study explores the influence of dataset Pipeline TrainNaII_itdatinn
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models in the context of virtual screening. Specifically, we evaluated the performance S h .
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trained on datasets with balanced and imbalanced class distributions on selected Hyperparameter l l
examples taken from two widely used virtual screening datasets: LIT-PCBA®> and DUD- Tuning KNN/XGBoost Metrics calculation

E+ Furthermore, during model training, hyperparameter tuning was performed via
grid search cross-validation (GSCV) using two virtual screening-aware metrics, namely, | | . o

| . o Figure 1. Machine Learning Pipeline.
area under the receiver operating characteristic curve (ROC AUC) and Matthew's

correlation coefficient (MCC).

Results
I Methodology I

Our analysis reveals significant differences in model performance depending on the

Data: The DUD-E database was selected for its extensive collection of active dataset composition and optimization metric (Table 2). Models optimized using the MCC
compounds and decoys. At the same time, the LIT-PCBA dataset provides robust during GSCV consistently demonstrated superior performance when trained on
experimental data for model validation and was designed to mitigate the biases Imbalanced datasets compared to those trained on balanced datasets. This superiority
oresented in DUD-E datasets. We took three datasets from each database to conduct highlights the practical utility of imbalanced data sets in scenarios where real-world data
the experiment. are inherently skewed.

Descriptors: The Canvas program calculated 1D and 2D molecular descriptors Despite this, models optimized for MCC often exhibited lower ROC AUC scores. However,

(Physicochemical, Topological, and LigFilter) for all compounds from all datasets, they achieved higher precision for the active molecule class, evidenced by an increased

resulting in 754 descriptors for each molecule. true positive rate among all predictions labeled as positive. Additionally, these models

Machine Learning: Both datasets underwent preprocessing to ensure compatibility demonstrated improved recall for the decoy class, reflected in a higher true negative rate.

with the machine learning workflows, including normalization and splitting into These results underscore the trade-offs introduced by MCC optimization.

| ' | Tal Table ). ' i Taal
balanced and imbalanced training and test sets (Table ) Furthermore, models trained on imbalanced data and optimized through GSCV-MCC

ML models were developed and evaluated using Python3.9, leveraging Scikit-learn 1.2.2 . . . . .
consistently displayed a lower false positive rate across all experiments than models trained

as the primary library for data preprocessing, model training, and evaluation. . . . . . .
P 4 Y PrEp 9 9 on balanced data. This reduction in false positives emphasizes the effectiveness of

Hyperparameter optimization was performed through GSCV, ensuring optimal model . L . . e
YRS > > I I P imbalanced datasets and MCC optimization in prioritizing correct classifications over

performance. . , .
potentially misleading results.

This study employed two ML algorithms, KNN and XGBoost 2.11, implemented as a

, S , The XGBoost models optimized using ROC AUC and imbalanced data yielded results
standalone library. These models were chosen for their distinct methodologies and

. , , similar to those optimized with balanced data. However, for the KNN model, the
ability to complement each other in analyzing the datasets.

: o , , imbalanced data optimization led to a notable improvement in performance,
Metrics: Hyperparameters were optimized, and final models were evaluated using two

, , , outperforming its balanced data counterpart based on Precision values. This suggests that
metrics: ROC AUC, a threshold-independent metric, and the MCC, a threshold-

, , | L | . the imbalanced data allowed the KNN model to better capture the underlying patterns,
dependent metric. Both metrics were computed using Scikit-learn’'s built-in

contributing to a more robust predictive capability.
functionalities. MCC score was normalized for easier comparison, as described in . 2 P P Y

The full ML pipeline is presented in he Figure 1.

Table 1. Data sets composition. I C()nclu51on
aldh fen var aces mk14 thrb This study highlights the effectiveness of using imbalanced datasets and MCC
Total size Actives Inactives | Total size Actives Inactives | Total size Actives Inactives | Total size Actives Inactives | Total size Actives Inactives | Total size Actives Inactives . . . . . ) . . . .
Imbalanced 179867 7284 172583 | 381415 433 380982 | 408185 960 407225 26704 452 26252 36321 577 35744 27396 460 26936 Optl mMization In Im Proving model performa nce for classification taSkS7 especia | |y N real-
Imbalanced Train 125006 5098 120808 | 266990 303 266687 | 285729 672 285057 18692 316 18376 25423 403 25020 19177 322 18855 world scenarios where data imbalances are common. While Opti Mizi ng for MCC may
Imbalanced Test 53961 2186 51775 | 114425 130 114295 | 122456 288 122168 8012 136 7876 10898 174 10724 8219 138 8081
Imbalanced Train GSCV 9999 405 9594 10000 11 9389 10000 24 9976 9747 165 9582 10000 159 9841 14392 247 14150 reduce ROC AUC scores, It enhances precision for active molecules and recall for
Balanced Train 10196 5098 5098 606 303 303 1344 672 672 632 316 316 806 403 403 644 322 322

decoys, offering a practical balance between precision and false positive rate. These
Table 2. Calculated metrics for XGBoost and KNN models for the test set.

findings underscore the importance of tailoring data set construction and optimization

strategies to the challenges of imbalanced datasets.
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