

Czech Metastatic Colorectal Cancer Patients: their Copy Number Variation and Clinical Response to Chemotherapy and Bevacizumab

Stranska Jana ^{1,2,3}; Bartakova Karolina ¹; Rozankova Zuzana ¹; Kotkova Lucie ¹; Vrbkova Jana ¹; Flodr Patrik ³;
Jurtikova Helena ^{1,2,3}; Liznerova Barbora ^{1,2}; Drabek Jiri ^{1,2,3}

¹ Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic

² Laboratory of Experimental Medicine, University Hospital Olomouc, Czech Republic

³ Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, Czech Republic

Introduction and aims

Bevacizumab (Avastin®) is a **humanized monoclonal antibody** targeting **vascular endothelial growth factor A** (VEGF-A), inhibiting angiogenesis in **metastatic colorectal cancer** (mCRC) (Fig. 1). It is primarily used in patients with **RAS mutations**, where cetuximab or panitumumab are ineffective. Bevacizumab is usually part of the FOLFOX or XELOX combination treatment for CRC in Czech cancer centers. Compared to cetuximab, bevacizumab prolongs overall survival and progression-free survival (PFS) in right-sided *RAS* wildtype and *BRAF* wildtype and *BRAF* mutant tumours [1,2]. Although bevacizumab is established in mCRC treatment, **no definitive DNA biomarker** for its efficacy exists [3]. Somatic mutations in **NRAS**, **BRAF**, and/or **PIK3CA** have been studied but lack validation as predictive markers [4]. We hypothesize that **somatic copy number variations** (CNVs) might be key biomarkers for bevacizumab efficacy.

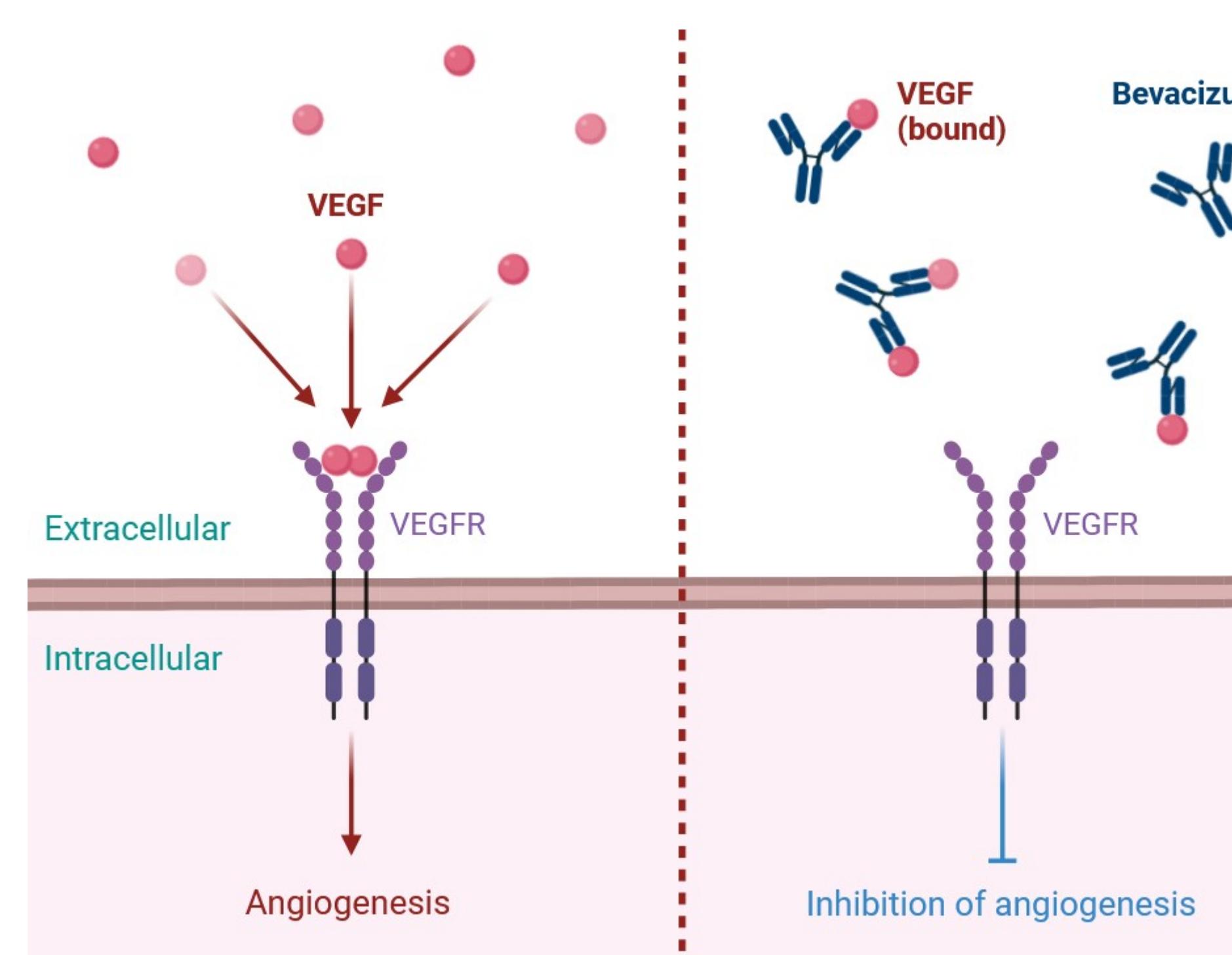


Fig. 1: Bevacizumab inhibits the angiogenic activity of VEGF. Created in <https://BioRender.com> according to <https://www.avastin.com/hcp/mcrc/proposed-moa.html>.

Material and methods

Clinical records of 142 patients with mCRC treated at University Hospital Olomouc were used to select **15 + 15 patients** according to their **clinical response to bevacizumab treatment** based on **progression-free survival: poor responders** (PFS \leq 9 months) and **good responders** (PFS \geq 10 months) (Tab. 1, Tab. 2). DNA was isolated from **FFPE samples** using the Cobas DNA Sample Preparation Kit (Roche) and **quantified by qPCR** [5]. **CNV analysis** was performed using the **OncoScan FFPE Assay Kit 1.0** (Thermo Fisher Scientific), which applies molecular inversion probes technology to detect CNVs in FFPE-derived DNA. The data was processed using **OncoScan Console 1.3** (Thermo Fisher Scientific) and **R software** [6] using the **rCGH package** [7] for segmentation and **GISTIC 2** analysis [8]. Functional annotation of genes was done using the **DAVID database version 6.8** [9] and its Functional Annotation Chart tool were used to annotate genes.

Results and discussion

Good responders showed **amplifications** in the **18p11.32** region and **deletions** in chromosomes **1p36.33**, **8p11.22**, **10q11.23**, **14q32.33**, **16p13.3**, and **20p12.1**. **Poor responders** exhibited **amplifications** at **8q24.21**, **14q12**, and **19q13.2**, with **no deletions above** the threshold (Fig. 2).

Functional annotation revealed that **good response** genes were involved in **ATPase activity**, **neuronal signaling**, and **transcription regulation**. **Poor responders** had amplified genes linked to **immune regulation** (*IFNL1*, *IFNL2*, *IFNL3*), **MAPK signaling** (*MAP3K10*, *MAP4K1*), and **differentiation** (*EID2*, *SIRT2*). Genes like *AGRN*, *MAPK8*, and *ARHGAP22* from **good responders** have been linked to **angiogenesis** and **treatment resistance**, while *DVL1* and *MYC* in **poor responders** are associated with **tumour proliferation** (Tab. 3).

Conclusion

This study suggests that CNVs detected by OncoScan technology could serve as biomarkers for predicting bevacizumab response in mCRC. Identifying genes linked to angiogenesis, tumourigenesis, and proliferation (e.g., *AGRN*, *MAPK8*, *MYC*, and *DVL1*) requires further validation in larger cohorts. Such findings could lead to personalized therapies, improving mCRC treatment outcomes. Future studies will validate these results using high-throughput methods like PCR to confirm their clinical utility.

Acknowledgement

This study was supported by the project SALVAGE (OP JAC; reg. no. CZ.02.01.01/00/22_008/0004644) – co-funded by the European Union and by the State Budget of the Czech Republic.

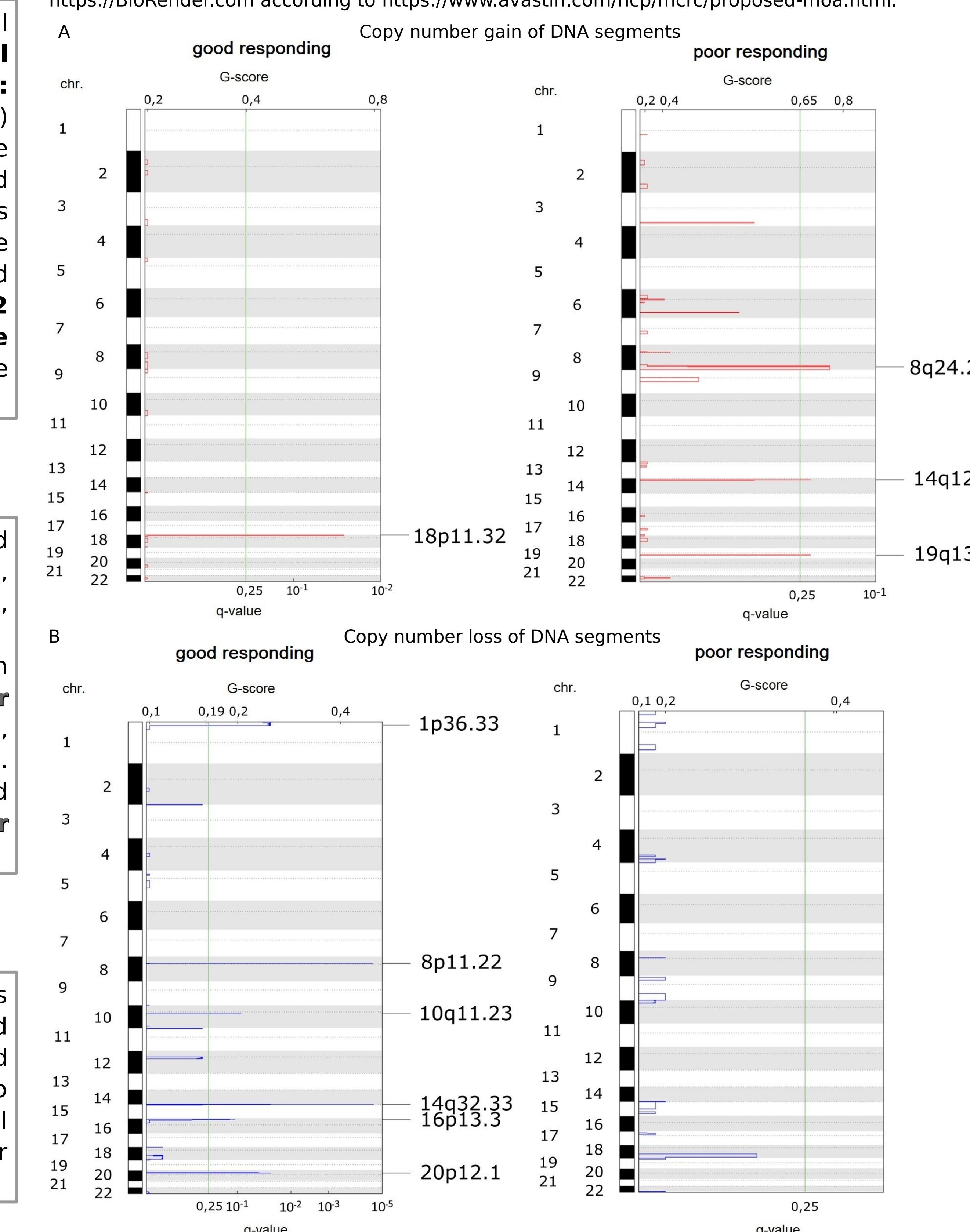


Fig. 2: An amplification/gain plot (A) and deletion/loss plot (B) generated by GISTIC 2 that identifies significant tumour targets in the genome by analysing all features with increased copy numbers of DNA segments within selected regions. The G-score value takes into account the intensity of the aberration as well as the frequency of its occurrence across samples. The q-value = 0,25, illustrated by the green line, represents the significance threshold.

Parameter	Poor Responding Patients	Good Responding Patients
sex	8 F / 7 M	7 F / 8 M
age	42-76 years (median 62 years)	45-70 years (median 62 years)
tumour tissue	10 primary carcinomas / 5 metastasis	7 primary carcinomas / 8 metastasis
colon	3 right / 12 left	3 right / 12 left
therapy length	median 168 days	median 236 days

Tab. 1: Patients cohort parameters.

Sex	Age at diagnosis	Tumour tissue	Tissue origin	Colon	Therapy length (days)	PFS (months)
Poor Responding Patients						
Patient 1	male	66	meta	rectosigmoid junction	left	98
Patient 2	female	64	prim	rectum	left	108
Patient 3	male	63	prim	sigmoid colon	left	154
Patient 4	female	60	meta	caecum	right	245
Patient 5	male	64	prim	ascending colon	right	161
Patient 6	male	52	prim	ascending colon	right	111
Patient 7	male	61	prim	rectum	left	161
Patient 8	female	64	meta	rectum	left	120
Patient 9	female	57	prim	rectosigmoid junction	left	168
Patient 10	female	56	prim	sigmoid colon	left	181
Patient 11	female	62	meta	rectum	left	177
Patient 12	female	42	prim	sigmoid colon	left	189
Patient 13	male	49	prim	sigmoid colon	left	180
Patient 14	male	69	prim	rectum	left	236
Patient 15	female	76	meta	splenic flexure	left	184
Good Responding Patients						
Patient 16	male	62	prim	rectosigmoid junction	left	301
Patient 17	male	65	prim	rectum	left	154
Patient 18	female	68	meta	sigmoid colon	left	877
Patient 19	male	59	meta	caecum	right	236
Patient 20	female	70	meta	caecum	right	739
Patient 21	female	65	prim	sigmoid colon	left	113
Patient 22	male	68	prim	hepatic flexure	right	245
Patient 23	female	49	meta	rectum	left	159
Patient 24	male	54	prim	rectum	left	499
Patient 25	female	52	prim	rectum	left	351
Patient 26	male	45	prim	sigmoid colon	left	238
Patient 27	female	65	meta	rectum	left	168
Patient 28	male	61	meta	sigmoid colon	left	132
Patient 29	male	51	meta	sigmoid colon	left	109
Patient 30	female	69	meta	sigmoid colon	left	145

Tab. 2: Patient characteristics in both cohorts.

Altered area	Genes in the area	Frequency of signal
Good responding patients		
ATPases, type AAA	1p36.33, ATAD3A, ATAD3B, and ATAD3C	7/15
Neuronal signal transmission	1p36.33, AGRN and DVL1, MAPK8, CHAT, and SLC18A3	7/15
Regulation of transcription	10q11.23, ERCC6, 18p11.32, THOC1	2/15
Superior domain PH type	1p36.33, ACAP3 and PLEKH1, AGAP4, ARHGAP22, and WDFY4	7/15
Poor responding patients		
Galectines	19q13.2, CLC, LGALS13, LGALS17A, LGALS14, LGALS16, LGALS4, LGALS7, and LGALS7B	8/15
Jak-STAT signalling pathway	19q13.2, IFNL1, IFNL2, and IFNL3	8/15
MAPK cascade	19q13.2, MAP3K10, MAP4K1, ZFP36, PSMC4, PSMD8, and RASGRP4, 8q24.21, MYC	8/15
Differentiation	19q13.2, EID2, EID2B, SIRT2, CATSPERG, DLL3, and GGN	12/15
F-box associated domain	19q13.2, FBXO17, FBXO27, and NCCRP1	8/15

Tab. 3: Significant functional groups of genes overview.

References

1. doi: 10.1093/annonc/mdx175
2. doi: 10.1016/j.annonc.2022.10.003
3. doi: 10.1016/j.ctrv.2020.102017
4. doi: 10.6001/actamedica.v23i1.3267
5. doi: 10.5507/bp.2018.079
6. https://www.R-project.org/
7. doi: 10.1093/bioinformatics/btv718
8. doi: 10.1186/gb-2011-12-4-r41
9. doi: 10.1093/nar/gkn923