Fragmentation in cyclic traveling wave ion mobility cell
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Coupling ion mobility to mass spectrometry improves the differentiation of o

SELECT SERIES Cyclic IMS QTOF (Waters, U.K.) - cyclic traveling wave ion
isomers.[1] Increasing the resolving power of ion mobility can enhance mobility, electrospray, positive mode, direct infusion (5 puL/min)
isomer separation; however, arrival time distribution (ATD) profiles can also .
be used to determine isomeric ratios, even for strongly overlapped
peaks.[2] ATD profiles are affected by ion fragmentation. For linear traveling
wave ion mobility, the effect of separation parameters on the effective
temperature (T.4) inside the cell was studied.[3-5] Here, we focus on ion
fragmentation in cyclic ion mobility by determining the rate constant

changes in the cell.

e Results

1e7 triFBA: 18 V, 380 m/s

The effect of cyclic ion mobility settings was investigated by fragmenting
thermometer ions[6]:

4-(trifluoromethyl)benzylamonium (triFBA, dissoc. energ. 1.89 eV)
4-methoxybenzylpyridinium (MeOBP, 1.84 eV)

4-methylbenzylpyridinium (MeBP, 2.27 eV)

* The model fitting and the integration were coded in Python
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Rate constant evaluation — three procedures

s /2159 between O and TOF Fig. 1: Fragmenta.tlon +of triFBA (A*, m/z
—— m/z 159 - in ion source 176) to fragment ion B* (m/z 159, the loss dn(B)/dt = k-n(A)

20- m/z 176 - precursor ion of ammonia) under different setting of A - amount of substance. t - time
R selected data points traveling wave height (18, 16 and 14 V) cach d tin the midd| ’ dn(B)/dt (Fie. 1). but th
25 and velocity (380, 420 and 460 m/s). ach data point |n.t e mic e.segmer?’c. represent.s n(B)/dt ( 8. ), but t. e rate
3 Selected data points are not influenced constant k varies during ion mobility separation due to heating/cooling
-y by fragmentation before and after o ProCeESSEs.

0.5 mobility separation. Model derivation @

Hioh | loci Arrhenius equation: k(T) = A-exp(-E_/kgT) . _ _
0.0 ) igher wave, lower velocity E_- activation energy, k, - Boltzmann constant, n(A) — integration of mobilogram,

2 4 6 8 10 — higher ion energy. T - absolute temperature k determined for each selected data
Time (ms) . . .
le7  triFBA: 16 V, 380 m/s le7  triFBA: 16V, 420 m/s Taylor polynomial of k(T) point (see Fig. 1)
\ ” Newton's law of cooling:
| T(t)=<T1-T2>exp<-yt>+n>*>@| —Q
Fragmentation relative Data point~dn(B)/dt | T _jnitial temperature, T,- surrounding derived k(t) function — the best fit to
> 1.5- to the mobility S 1 temperature :
% separation: G A a series of k-values from @
£1.01 before — during — after £ 1.0-
B - Area ~ n(A) _
. 05 The zero-order Taylor polynomial
cannot be used for fitting integration of k(t) = K(t)
0.0 | | | | 0.0 | | | | (p-value =0, see Tab. 1) = k is not K(t) - the best fit to selected data
2 4 6 8 10 2 4 6 8 10 o i . .
Time (me) e (me) constant in time. points (see Fig. 1)
le7 triFBA: 14V, 380 m/s le7 triFBA: 16 V, 460 m/s Tab. 1: Data curve fitting using different orders of the Taylor polynomial
50 A 0. | (selected data points, Fig. 1).
Wave Wave Taylor polynomial order
1.5 15 height (V) | vel. (m/s)
g ﬂ g A oth 1st 2nd 3rd
2 1.01 g 1.0 18 380 Red. X? 17.07 1.251 0.7356 0.5365
05- 0s. 0-value 0.0000 0.2582 0.6766 0.8490
j J} 16 330 Red. X? 6.250 0.3821 0.3162 0.2690
0.0 0.0 0-value 0.0000 0.9892 0.9965 0.9987
2 4 6 8 10 2 4 6 8 10

Time (ms) Time (ms)

Tab. 2: k-values determined using: procedure 1 - integration of mobilograms,
k-value for the last selected data point (see Fig. 1); procedure 3 - integration
of k(t), k-value at the time of the first selected data point + 5 ms. o

Procedures (1) and (3) were comparable (Tab. 2), (2) showed inconsistencies
in extrapolated k-values for the 2"4 and 3™-order Taylor polynomials.
Due to the effect of dynamic conditions in the ion mobility cell, k-values

Taylor polynomial order

(3] o

st Snd 3rd should not be considered absolute. However, they do reveal the relative
triFBA 18 380 143 113 116 117 effect of the experimental parameters.
®* For triFBA, extrapolation to a steady state confirmed: the k-values increased
420 0.87 0.78 0.80 0.81 : : : : :
160 06a 056 058 059 with higher wave height, but decreased with higher wave vel., e.g., for Tab. 2
16 280 0'44 0'39 0'40 0'41 (3, 2"d), 380 m/s: k(18 V)/ k(16 V)= 2.9; 16 V: k(420 m/s)/ k(380 m/s)= 0.65.
- : : : ®* The k-values were similar for MeOBP and triFBA (Tab. 2), but significantly
420 0.31 0.22 0.26 0.27 , , , o . ,
260 03 013 015 019 lower for MeBP (k<0.1). This was consistent with their dissociation energies.
| | | | The trends observed corresponded to the changes found for T [3-5], but our
14 380 0.15 0.09 0.12 0.13 : . :
approach allows k-value changes to be followed over ion mobility separation
MeOBP 16 380 0.38 0.40 0.43 0.43

and extrapolated to steady state.
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