

Jana Stránská^{1,2}, Rastislav Slavkovský¹, Gabriela Kořínková³, Barbora Líznerová¹,

Jiří Drábek^{1,2}, Martina Onderková⁴, Veronika Chladová⁴, Kateřina Bezděková⁴, Petr Brož^{5,6}, Hajdúch Marián^{1,2,7}

¹ Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic; ² Laboratory of Experimental Medicine, University Hospital Olomouc, Olomouc, Czech Republic;

³ Department of Clinical and Molecular Pathology, Olomouc University Hospital and Palacký University Olomouc, Olomouc, the Czech Republic;

⁴ BioVendor Group, Research & Diagnostic Products, Brno, the Czech Republic; ⁵ BIOXSYS s.r.o., Ústí nad Labem, the Czech Republic; ⁶ Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University Prague and Faculty Hospital Motol, Prague, Czech Republic; ⁷ Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic

Introduction and aims

The **PIK3CA** gene encodes Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit *alpha*, also called p110 α protein. PI3K enzymes are part of the **PI3K/AKT/mTOR pathway regulating cell growth and survival**. **PIK3CA** is the most recurrently **mutated gene in breast cancer** (up to 36 %) and is also detected in other cancer types. It acts as a molecular target for treatment with **PIK3CA inhibitor alpelisib** (or alpelisib/fulvestrant), which has a benefit for **hormone receptor-positive and HER2-negative metastatic breast cancer patients**. **Testing most PIK3CA mutations**, not only two main hotspots, 542/545 and 1047, is still challenging for laboratories (Fig. 1).

Material and methods

Deep amplicon sequencing (DAS) has a high potential to be a suitable method for the simultaneous detection of somatic mutations within **hotspot regions** with a defined **detection limit** down to **1 % minor allelic frequency (MAF)**. We have developed and validated a unique **fast, sensitive, and robust method** called **fastGEN** (Fig. 2) using Illumina platforms. **Formalin-fixed paraffin-embedded breast tumors** were genotyped for more than 25 clinically relevant mutations of the **PIK3CA** exonuclease domain (Fig. 3) and sequenced on MiSeq (Illumina).

Results and discussion

First, we have prepared **v1** of **PIK3CA** test, including **14+ mutations in 542/545 and 1047 hotspots**. We tested 24 samples with mutations detected in 9 out of 24 samples (37.5%). The test was **highly reproducible** (n=11, PIK3CA p.E545K, MAF = 40.5% \pm 1.1%; n=8, PIK3CA p.H1047R, MAF = 26% \pm 1.4%).

Then, we continued with **v2 of PIK3CA test**, including **25+ mutations in exons 2, 3, 5, 7, 8, 10, 14, and 21**. Larger somatic NGS panels (Qiagen QIAseq TMB Panel or QIAseq Custom Panel) were used for validation of fastGEN results confirming mutations in all exons. Using samples, where results of both methods were available (Tab. 1), we observed a **concordance with 100 % specificity and sensitivity**. The test was **highly reproducible** (n=6, PIK3CA p.H1047R, MAF = 47.2% \pm 1.5%; n=4, PIK3CA p.V344G, MAF = 6% \pm 0.4%) and **sensitive** (Tab. 2; n = 4, input = 1 ng DNA). A **minimum turn-around time** (from sample receive to final report) was **less than 24 hours**. fastGEN technology is routinely performed for tumor testing of **POLE, RAS, BRAF, EGFR, IDH1/2, TERT** and **TP53** in our lab; other genes are under development. The technology was licensed by the partner BioVendor Group.

Conclusion

Detection of **PIK3CA somatic mutations** by **fastGEN technology** is really **fast and easy** to perform with a **high success rate**, including samples with **low amount and low quality DNA**. With other often requested predictive biomarkers, laboratories with **Illumina sequencers** can easily implement fastGEN kits. A user-friendly and robust **bioinformatic pipeline** is based on **Genovesa fastGEN platform**. We have shown that using the fastGEN kit could be a suitable method for routine diagnostics.

Acknowledgement

This study was supported by the project SALVAGE (OP JAC; reg. no. CZ.02.01.01/00/22_008/0004644) - co-funded by the European Union and by the State Budget of the Czech Republic.

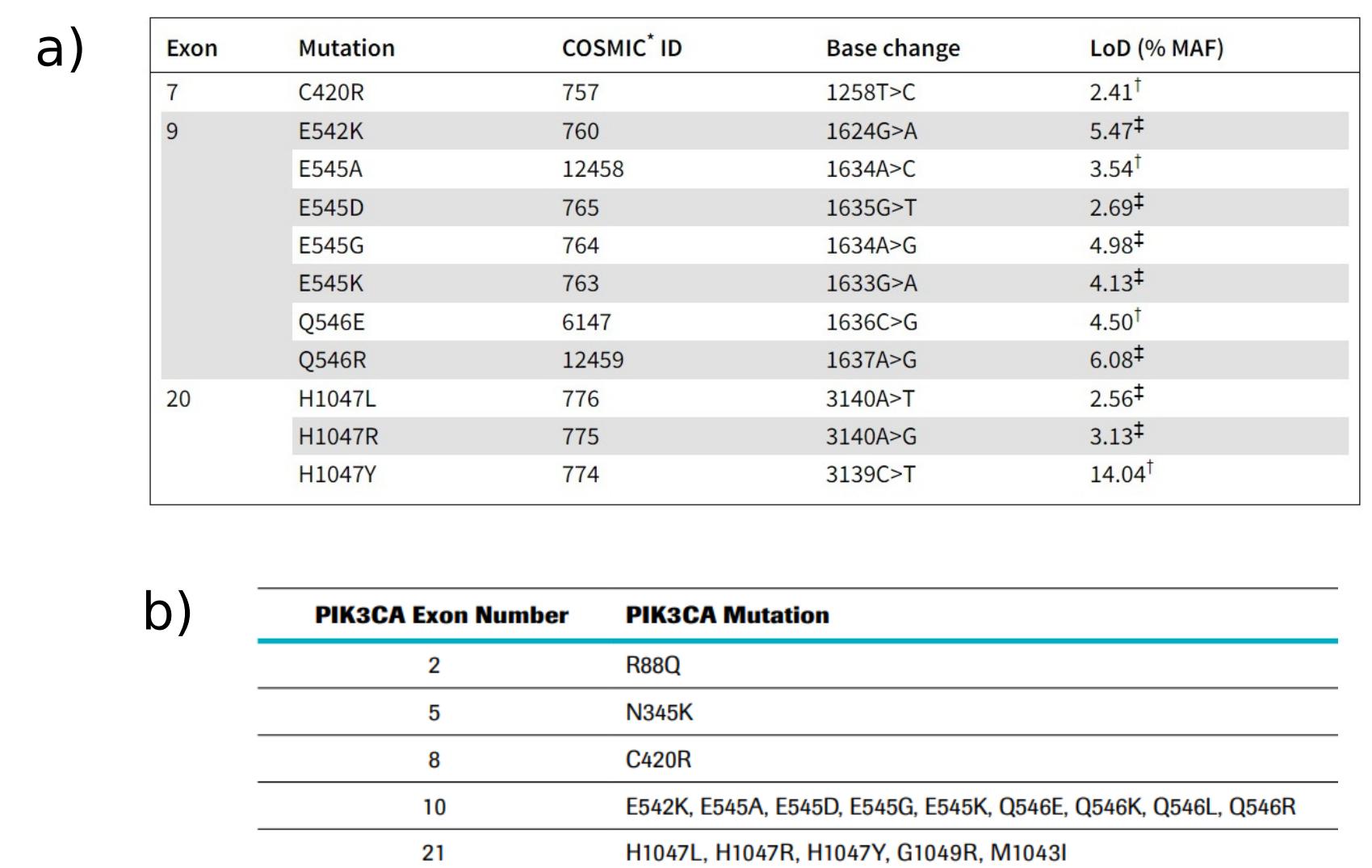


Fig. 1: Detection of **PIK3CA** mutations. Available kits on the market in beginnings of our **PIK3CA** testing were a) **therascreen PIK3CA RGQ PCR Kit** (Qiagen) detecting 11 variants, and b) **cobas® PIK3CA Mutation Test** (Roche Diagnostics) detecting 17 variants.

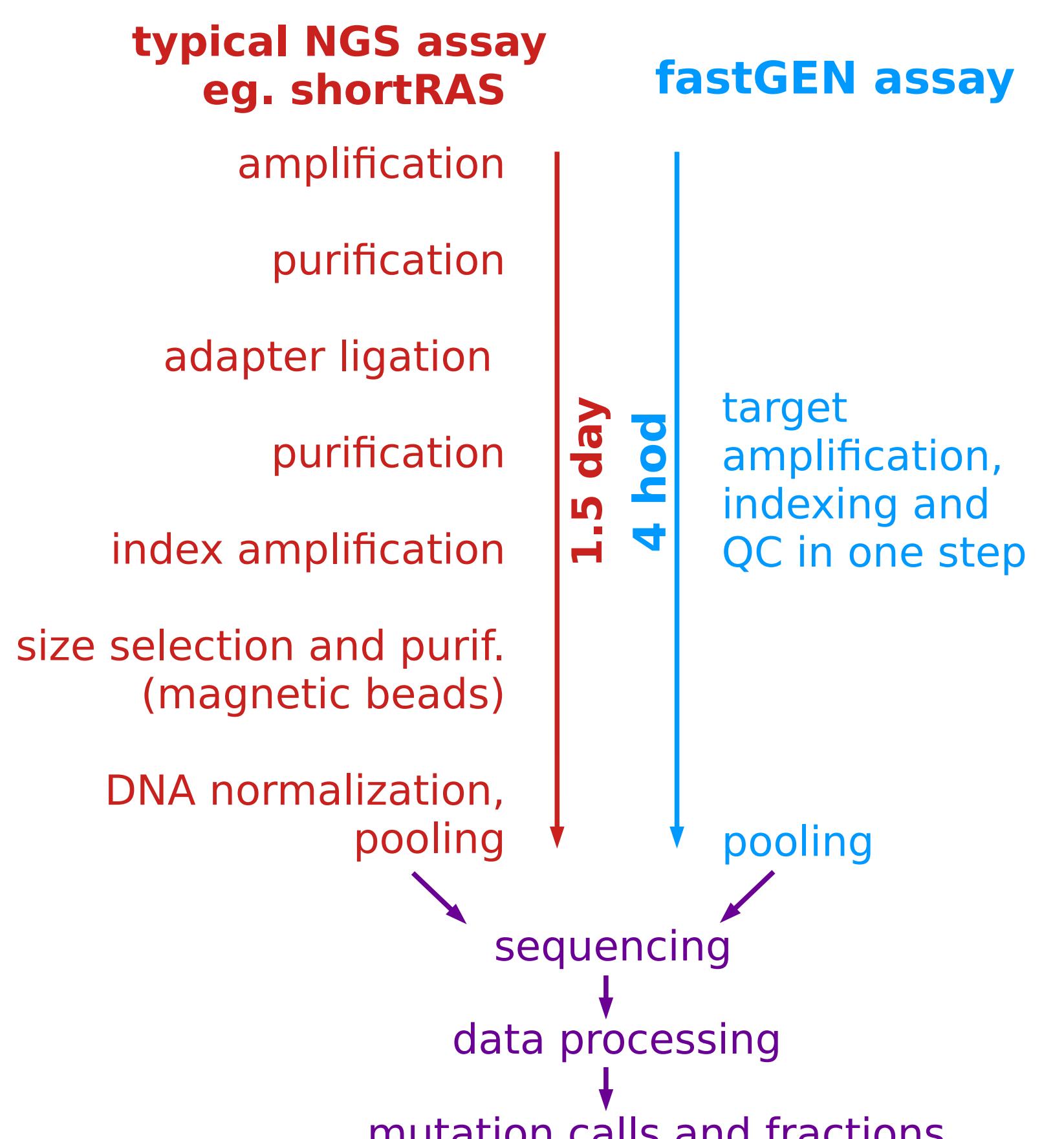


Fig. 2: Scheme of procedures in **typical** and **fastGEN** assays. (typical assay is described for example in Slavkovský 2022, *Neoplasma* Vol.69)

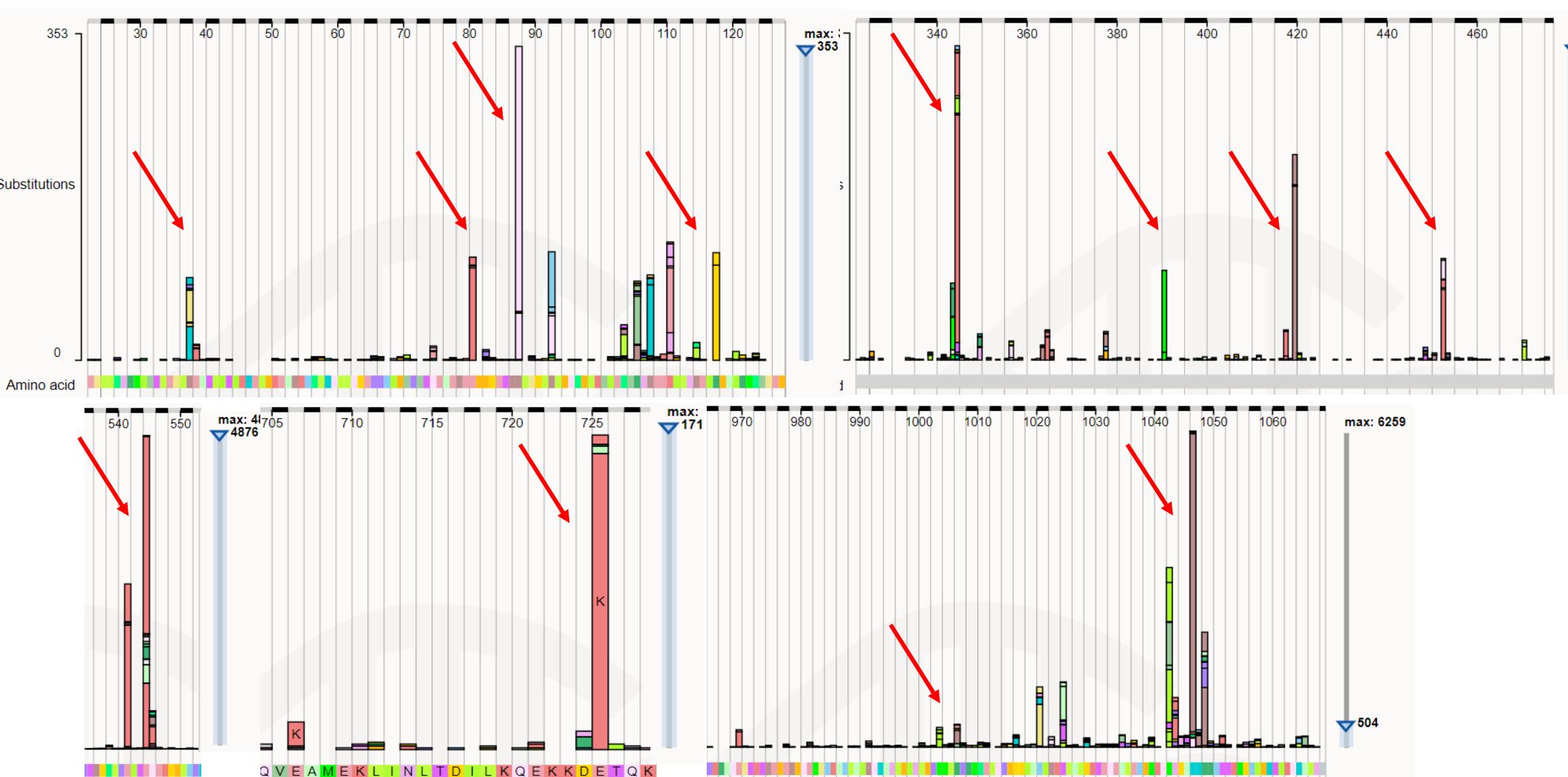


Fig. 3: **PIK3CA** mutation survey. We searched for **PIK3CA** variants suitable for testing in the Catalogue Of Somatic Mutations In Cancer. As a result, fastGEN **PIK3CA** test v2 covers more than 25 clinically relevant variants (c; zoomed view).

Sample ID	Method	Result	MAF	Sequencing Depth (x)
15635	fastGEN PIK3CA test v2	wt	0 %	>1000*
	QIAseq Tumor Mutational Burden Panel	wt	0 %	>1000*
15636	fastGEN PIK3CA test v2	wt	0 %	>1000*
	QIAseq Tumor Mutational Burden Panel	wt	0 %	>1000*
15642	fastGEN PIK3CA test v2	wt	0 %	>1000*
	QIAseq Tumor Mutational Burden Panel	wt	0 %	>1000*
13727	QIAseq Custom Small Cancer Panel - 41 genes	wt	0 %	>1000*
	fastGEN PIK3CA test v2	wt	0 %	>1000*
15662	fastGEN PIK3CA test v2	wt	0 %	>1000*
	QIAseq Tumor Mutational Burden Panel	wt	0 %	>1000*
14446	fastGEN PIK3CA test v2	E542K	9 %	895
	The Cell3™ Target: Pan-Cancer Panel	E542K	8 %	366
15406	fastGEN PIK3CA test v2	L1006F	6 %	6390
	QIAseq Tumor Mutational Burden Panel	L1006F	13 %	n/a
14436	fastGEN PIK3CA test v2	G118D	11 %	6010
	QIAseq Tumor Mutational Burden Panel	G118D	13 %	n/a
		R38S	14 %	420
		M1004I	6 %	3470
		M1043I	9 %	3081
		D1045Y	9 %	3091
13580		R38S	16 %	n/a
	QIAseq Tumor Mutational Burden Panel	M1004I	7 %	n/a
		M1043I	17 %	n/a
		D1045Y	15 %	n/a
14800	fastGEN PIK3CA test v2	V344G	6 %	42122
	QIAseq Tumor Mutational Burden Panel	V344G	6 %	n/a
		H1047R	39 %	2042
15081	fastGEN PIK3CA test v2	C420R	36 %	5670
	QIAseq Tumor Mutational Burden Panel	H1047R	45 %	n/a
		C420R	34 %	n/a
15734	fastGEN PIK3CA test v2	E545K	57 %	6192
	QIAseq Tumor Mutational Burden Panel	E545K	60 %	n/a
HD701	fastGEN PIK3CA test v2	H1047R	19 %	2317
		E545K	10 %	6691
	declared by manufacturer	H1047R	17.5 %	n/a
		E545K	9 %	n/a

Tab. 1: Validation of fastGEN **PIK3CA** test v2 results - testing of diagnostic parameters - a concordance of diagnostic sensitivity and specificity was 100%. * values for sequencing depth for all the studied regions (negative), n/a - not available.

Sample ID	DNA input [ng]	Ct	Result	MAF	Sequencing Depth (x)
15706	10	29.1	E542K	11 %	>2000
	5	31.62	E542K	9 %	>6000
	1	34.05	E542K	8 %	>1700
	20	26.28	V334G	6 %	>10000
14800	5	28.49	V334G	6.5 %	>7000
	1	30.12	V334G	6 %	>2000
	20	29.9	H1047R	48.5 %	>1500
14983	5	30.46	H1047R	47 %	>2000
	1	32.04	H1047R	21 %	>2400
	10	28.91	wt	0 %	>7500*
14069	5	30.17	wt	0 %	>9000*
	1	31.01	wt	0 %	>2500*

Tab. 2: Detection limit of fastGEN **PIK3CA** test v2 was set to 1 ng of DNA input. Ct, cycle threshold, * values for sequencing depth for all the studied regions (negative).